Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(4): 114022, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38568806

RESUMEN

Staphylococcus aureus causes the majority of skin and soft tissue infections, but this pathogen only transiently colonizes healthy skin. However, this transient skin exposure enables S. aureus to transition to infection. The initial adhesion of S. aureus to skin corneocytes is mediated by surface protein G (SasG). Here, phylogenetic analyses reveal the presence of two major divergent SasG alleles in S. aureus: SasG-I and SasG-II. Structural analyses of SasG-II identify a nonaromatic arginine in the binding pocket of the lectin subdomain that mediates adhesion to corneocytes. Atomic force microscopy and corneocyte adhesion assays indicate that SasG-II can bind to a broader variety of ligands than SasG-I. Glycosidase treatment results in different binding profiles between SasG-I and SasG-II on skin cells. In addition, SasG-mediated adhesion is recapitulated using differentiated N/TERT keratinocytes. Our findings indicate that SasG-II has evolved to adhere to multiple ligands, conferring a distinct advantage to S. aureus during skin colonization.


Asunto(s)
Adhesión Bacteriana , Queratinocitos , Piel , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Humanos , Piel/microbiología , Piel/metabolismo , Queratinocitos/microbiología , Queratinocitos/metabolismo , Lectinas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Filogenia , Unión Proteica
2.
bioRxiv ; 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38045275

RESUMEN

Staphylococcus aureus causes the majority of skin and soft tissue infections, but this pathogen only transiently colonizes healthy skin. However, this transient skin exposure enables S. aureus to transition to infection. Initial adhesion of S. aureus to skin corneocytes is mediated by surface protein G (SasG). Here, phylogenetic analyses reveal the presence of two major divergent SasG alleles in S. aureus, SasG-I and SasG-II. Structural analyses of SasG-II identified a unique non-aromatic arginine in the binding pocket of the lectin subdomain that mediates adhesion to corneocytes. Atomic force microscopy and corneocyte adhesion assays indicated SasG-II can bind to a broader variety of ligands than SasG-I. Glycosidase treatment resulted in different binding profiles between SasG-I and SasG-II on skin cells. Additionally, SasG-mediated adhesion was recapitulated using differentiated N/TERT keratinocytes. Our findings indicate that SasG-II has evolved to adhere to multiple ligands, conferring a distinct advantage to S. aureus during skin colonization.

3.
bioRxiv ; 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38106145

RESUMEN

The conserved Gsx homeodomain (HD) transcription factors specify neural cell fates in animals from flies to mammals. Like many HD proteins, Gsx factors bind A/T-rich DNA sequences prompting the question - how do HD factors that bind similar DNA sequences in vitro regulate specific target genes in vivo? Prior studies revealed that Gsx factors bind DNA both as a monomer on individual A/T-rich sites and as a cooperative homodimer to two sites spaced precisely seven base pairs apart. However, the mechanistic basis for Gsx DNA binding and cooperativity are poorly understood. Here, we used biochemical, biophysical, structural, and modeling approaches to (1) show that Gsx factors are monomers in solution and require DNA for cooperative complex formation; (2) define the affinity and thermodynamic binding parameters of Gsx2/DNA interactions; (3) solve a high-resolution monomer/DNA structure that reveals Gsx2 induces a 20° bend in DNA; (4) identify a Gsx2 protein-protein interface required for cooperative DNA binding; and (5) determine that flexible spacer DNA sequences enhance Gsx2 cooperativity on dimer sites. Altogether, our results provide a mechanistic basis for understanding the protein and DNA structural determinants that underlie cooperative DNA binding by Gsx factors, thereby providing a deeper understanding of HD specificity.

4.
Protein Sci ; 32(8): e4707, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37334491

RESUMEN

Staphylococcus epidermidis and Staphylococcus aureus are highly problematic bacteria in hospital settings. A major challenge is their ability to form biofilms on abiotic or biotic surfaces. Biofilms are well-organized, multicellular bacterial aggregates that resist antibiotic treatment and often lead to recurrent infections. Bacterial cell wall-anchored (CWA) proteins are important players in biofilm formation and infection. Many have putative stalk-like regions or regions of low complexity near the cell wall-anchoring motif. Recent work demonstrated the strong propensity of the stalk region of S. epidermidis accumulation-associated protein (Aap) to remain highly extended under solution conditions that typically induce compaction. This behavior is consistent with the expected function of a stalk-like region that is covalently attached to the cell wall peptidoglycan and projects the adhesive domains of Aap away from the cell surface. In this study, we evaluate whether the ability to resist compaction is a common theme among stalk regions from various staphylococcal CWA proteins. Circular dichroism spectroscopy was used to examine secondary structure changes as a function of temperature and cosolvents along with sedimentation velocity analytical ultracentrifugation, size-exclusion chromatography, and SAXS to characterize structural characteristics in solution. All stalk regions tested are intrinsically disordered, lacking secondary structure beyond random coil and polyproline type II helix, and they all sample highly extended conformations. Remarkably, the Ser-Asp dipeptide repeat region of SdrC exhibited nearly identical behavior in solution when compared to the Aap Pro/Gly-rich region, despite highly divergent sequence patterns, indicating conservation of function by various distinct staphylococcal CWA protein stalk regions.


Asunto(s)
Proteínas de la Membrana , Infecciones Estafilocócicas , Humanos , Proteínas de la Membrana/metabolismo , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Biopelículas , Proteínas Bacterianas/química , Staphylococcus epidermidis/química , Staphylococcus epidermidis/metabolismo , Infecciones Estafilocócicas/microbiología
5.
MAbs ; 15(1): 2215363, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37243579

RESUMEN

Camelid heavy-chain-only antibodies are a unique class of antibody that possesses only a single variable domain (termed VHH) for antigen recognition. Despite their apparent canonical mechanism of target recognition, where a single VHH domain binds a single target, an anti-caffeine VHH has been observed to possess 2:1 stoichiometry. Here, the structure of the anti-caffeine VHH/caffeine complex enabled the generation and biophysical analysis of variants that were used to better understand the role of VHH homodimerization in caffeine recognition. VHH interface mutants and caffeine analogs, which were examined to probe the mechanism of caffeine binding, suggested caffeine recognition is only possible with the VHH dimer species. Correspondingly, in the absence of caffeine, the anti-caffeine VHH was found to form a dimer with a dimerization constant comparable to that observed with VH:VL domains in conventional antibody systems, which was most stable near physiological temperature. While the VHH:VHH dimer structure (at 1.13 Å resolution) is reminiscent of conventional VH:VL heterodimers, the homodimeric VHH possesses a smaller angle of domain interaction, as well as a larger amount of apolar surface area burial. To test the general hypothesis that the short complementarity-determining region-3 (CDR3) may help drive VHH:VHH homodimerization, an anti-picloram VHH domain containing a short CDR3 was generated and characterized, which revealed it also existed as dimer species in solution. These results suggest homodimer-driven recognition may represent a more common method of VHH ligand recognition, opening opportunities for novel VHH homodimer affinity reagents and helping to guide their use in chemically induced dimerization applications.


Asunto(s)
Anticuerpos de Dominio Único , Secuencia de Aminoácidos , Dimerización , Regiones Determinantes de Complementariedad/química , Cadenas Pesadas de Inmunoglobulina/química , Anticuerpos/química
6.
Eur Biophys J ; 52(4-5): 427-438, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37055656

RESUMEN

A recent investigation was aimed at obtaining structural information on a highly extended protein via SEC-MALS-SAXS. Significantly broadened elution peaks were observed, reminiscent of a phenomenon known as viscous fingering. This phenomenon is usually observed above 50 mg/mL for proteins like bovine serum albumin (BSA). Interestingly, the highly extended protein (Brpt5.5) showed viscous fingering at concentrations lower than 5 mg/mL. The current study explores this and other non-ideal behavior, emphasizing the presence of these effects at relatively low concentrations for extended proteins. BSA, Brpt5.5, and a truncated form of Brpt5.5 referred to as Brpt1.5 are studied systematically using size-exclusion chromatography (SEC), sedimentation velocity analytical ultracentrifugation (AUC), and viscosity. The viscous fingering effect is quantified using two approaches and is found to correlate well with the intrinsic viscosity of the proteins-Brpt5.5 exhibits the most severe effect and is the most extended protein tested in the study. By AUC, the hydrodynamic non-ideality was measured for each protein via global analysis of a concentration series. Compared to BSA, both Brpt1.5 and Brpt5.5 showed significant non-ideality that could be easily visualized at concentrations at or below 5 mg/mL and 1 mg/mL, respectively. A variety of relationships were examined for their ability to differentiate the proteins by shape using information from AUC and/or viscosity. Furthermore, these relationships were also tested in the context of hydrodynamic modeling. The importance of considering non-ideality when investigating the structure of extended macromolecules is discussed.


Asunto(s)
Hidrodinámica , Albúmina Sérica Bovina , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Viscosidad , Sustancias Macromoleculares
7.
Biomol NMR Assign ; 17(1): 95-99, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37022616

RESUMEN

Staphylococcus epidermidis is the leading causative agent for hospital-acquired infections, especially device-related infections, due to its ability to form biofilms. The accumulation-associated protein (Aap) of S. epidermidis is primarily responsible for biofilm formation and consists of two domains, A and B. It was found that the A domain is responsible for the attachment to the abiotic/biotic surface, whereas the B domain is responsible for the accumulation of bacteria during biofilm formation. One of the parts of the A domain is the Aap lectin, which is a carbohydrate-binding domain having 222 amino acids in its structure. Here we report the near complete backbone chemical shift assignments for the lectin domain, as well as its predicted secondary structure. This data will provide a platform for future NMR studies to explore the role of lectin in biofilm formation.


Asunto(s)
Proteínas Bacterianas , Staphylococcus epidermidis , Proteínas Bacterianas/química , Staphylococcus epidermidis/metabolismo , Lectinas/metabolismo , Resonancia Magnética Nuclear Biomolecular , Biopelículas
8.
bioRxiv ; 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36747832

RESUMEN

Staphylococci, whether beneficial commensals or pathogens, often colonize human skin, potentially leading to competition for the same niche. In this multidisciplinary study we investigate the structure, binding specificity, and mechanism of adhesion of the Aap lectin domain required for Staphylococcus epidermidis skin colonization and compare its characteristics to the lectin domain from the orthologous Staphylococcus aureus adhesin SasG. The Aap structure reveals a legume lectin-like fold with atypical architecture, showing specificity for N-acetyllactosamine and sialyllactosamine. Bacterial adhesion assays using human corneocytes confirmed the biological relevance of these Aap-glycan interactions. Single-cell force spectroscopy experiments measured individual binding events between Aap and corneocytes, revealing an extraordinarily tight adhesion force of nearly 900 nN and a high density of receptors at the corneocyte surface. The SasG lectin domain shares similar structural features, glycan specificity, and corneocyte adhesion behavior. We observe cross-inhibition of Aap-and SasG-mediated staphylococcal adhesion to corneocytes. Together, these data provide insights into staphylococcal interspecies competition for skin colonization and suggest potential avenues for inhibition of S. aureus colonization.

9.
bioRxiv ; 2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36711672

RESUMEN

Staphylococcus epidermidis and S. aureus are highly problematic bacteria in hospital settings. This stems, at least in part, from strong abilities to form biofilms on abiotic or biotic surfaces. Biofilms are well-organized multicellular aggregates of bacteria, which, when formed on indwelling medical devices, lead to infections that are difficult to treat. Cell wall-anchored (CWA) proteins are known to be important players in biofilm formation and infection. Many of these proteins have putative stalk-like regions or regions of low complexity near the cell wall-anchoring motif. Recent work demonstrated the strong propensity of the stalk region of the S. epidermidis accumulation-associated protein (Aap) to remain highly extended under solution conditions that typically induce compaction or other significant conformational changes. This behavior is consistent with the expected function of a stalk-like region that is covalently attached to the cell wall peptidoglycan and projects the adhesive domains of Aap away from the cell surface. In this study, we evaluate whether the ability to resist compaction is a common theme among stalk regions from various staphylococcal CWA proteins. Circular dichroism spectroscopy was used to examine secondary structure changes as a function of temperature and cosolvents along with sedimentation velocity analytical ultracentrifugation and SAXS to characterize structural characteristics in solution. All stalk regions tested are intrinsically disordered, lacking secondary structure beyond random coil and polyproline type II helix, and they all sample highly extended conformations. Remarkably, the Ser-Asp dipeptide repeat region of SdrC exhibited nearly identical behavior in solution when compared to the Aap Pro/Gly-rich region, despite highly divergent sequence patterns, indicating conservation of function by various distinct staphylococcal CWA protein stalk regions.

10.
Endocrinology ; 164(3)2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36718082

RESUMEN

Inhibins are transforming growth factor-ß family heterodimers that suppress follicle-stimulating hormone (FSH) secretion by antagonizing activin class ligands. Inhibins share a common ß chain with activin ligands. Follistatin is another activin antagonist, known to bind the common ß chain of both activins and inhibins. In this study, we characterized the antagonist-antagonist complex of inhibin A and follistatin to determine if their interaction impacted activin A antagonism. We isolated the inhibin A:follistatin 288 complex, showing that it forms in a 1:1 stoichiometric ratio, different from previously reported homodimeric ligand:follistatin complexes, which bind in a 1:2 ratio. Small angle X-ray scattering coupled with modeling provided a low-resolution structure of inhibin A in complex with follistatin 288. Inhibin binds follistatin via the shared activin ß chain, leaving the α chain free and flexible. The inhibin A:follistatin 288 complex was also shown to bind heparin with lower affinity than follistatin 288 alone or in complex with activin A. Characterizing the inhibin A:follistatin 288 complex in an activin-responsive luciferase assay and by surface plasmon resonance indicated that the inhibitor complex readily dissociated upon binding type II receptor activin receptor type IIb, allowing both antagonists to inhibit activin signaling. Additionally, injection of the complex in ovariectomized female mice did not alter inhibin A suppression of FSH. Taken together, this study shows that while follistatin binds to inhibin A with a substochiometric ratio relative to the activin homodimer, the complex can dissociate readily, allowing both proteins to effectively antagonize activin signaling.


Asunto(s)
Folistatina , Glicoproteínas , Femenino , Ratones , Animales , Glicoproteínas/metabolismo , Inhibinas/metabolismo , Activinas/metabolismo , Ligandos , Hormona Folículo Estimulante/metabolismo
11.
Ultrasound Med Biol ; 49(2): 539-548, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36336551

RESUMEN

Surgical intervention for the treatment of intracerebral hemorrhage (ICH) has been limited by inadequate lysis of the target thrombus. Adjuvant transcranial ultrasound exposure is hypothesized to improve thrombolysis, expedite hematoma evacuation and improve clinical outcomes. A juvenile porcine intracerebral hemorrhage model was established by direct infusion of autologous blood into the porcine white matter. Thrombi were either not treated (sham) or treated with recombinant tissue plasminogen activator alone (rt-PA only) or in combination with pulsed transcranial 120-kHz ultrasound (sonothrombolysis). After treatment, pigs were euthanized, the heads frozen and sectioned and the thrombi extracted. D-Dimer and thrombus density assays were used to assess degree of lysis. Both porcine and human D-dimer assays tested did not have sufficient sensitivity to detect porcine D-dimer. Thrombi treated with rt-PA with or without 120-kHz ultrasound had a significantly lower density compared with sham-treated thrombi. No enhancement of rt-PA-mediated thrombolysis was noted with the addition of 120-kHz ultrasound (sonothrombolysis). The thrombus density assay revealed thrombolytic efficacy caused by rt-PA in an in vivo juvenile porcine model of intracerebral hemorrhage. Transcranial sonothrombolysis did not enhance rt-PA-induced thrombolysis, likely because of the lack of exogenous cavitation nuclei.


Asunto(s)
Trombosis , Activador de Tejido Plasminógeno , Animales , Humanos , Hemorragia Cerebral/terapia , Fibrinolíticos/uso terapéutico , Porcinos , Terapia Trombolítica , Trombosis/tratamiento farmacológico , Activador de Tejido Plasminógeno/uso terapéutico , Activador de Tejido Plasminógeno/farmacología
12.
J Mol Biol ; 434(16): 167708, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35777467

RESUMEN

Staphylococcus epidermidis is a commensal bacterium on human skin that is also the leading cause of medical device-related infections. The accumulation-associated protein (Aap) from S. epidermidis is a critical factor for infection via its ability to mediate biofilm formation. The B-repeat superdomain of Aap is composed of 5 to 17 Zn2+-binding B-repeats, which undergo rapid, reversible assembly to form dimer and tetramer species. The tetramer can then undergo a conformational change and nucleate highly stable functional amyloid fibrils. In this study, multiple techniques including analytical ultracentrifugation (AUC) and small-angle X-ray scattering (SAXS) are used to probe a panel of B-repeat mutant constructs that assemble to distinct oligomeric states to define the structural characteristics of B-repeat dimer and tetramer species. The B-repeat region from Aap forms an extremely elongated conformation that presents several challenges for standard SAXS analyses. Specialized approaches, such as cross-sectional analyses, allowed for in-depth interpretation of data, while explicit-solvent calculations via WAXSiS allowed for accurate evaluation of atomistic models. The resulting models suggest mechanisms by which Aap functional amyloid fibrils form, illuminating an important contributing factor to recurrent staphylococcal infections.


Asunto(s)
Amiloide , Proteínas Bacterianas , Biopelículas , Staphylococcus epidermidis , Amiloide/química , Amiloide/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Humanos , Modelos Químicos , Mutación , Multimerización de Proteína , Dispersión del Ángulo Pequeño , Staphylococcus epidermidis/fisiología , Difracción de Rayos X
13.
Nature ; 606(7915): 769-775, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35676476

RESUMEN

Adaptive immune components are thought to exert non-overlapping roles in antimicrobial host defence, with antibodies targeting pathogens in the extracellular environment and T cells eliminating infection inside cells1,2. Reliance on antibodies for vertically transferred immunity from mothers to babies may explain neonatal susceptibility to intracellular infections3,4. Here we show that pregnancy-induced post-translational antibody modification enables protection against the prototypical intracellular pathogen Listeria monocytogenes. Infection susceptibility was reversed in neonatal mice born to preconceptually primed mothers possessing L. monocytogenes-specific IgG or after passive transfer of antibodies from primed pregnant, but not virgin, mice. Although maternal B cells were essential for producing IgGs that mediate vertically transferred protection, they were dispensable for antibody acquisition of protective function, which instead required sialic acid acetyl esterase5 to deacetylate terminal sialic acid residues on IgG variable-region N-linked glycans. Deacetylated L. monocytogenes-specific IgG protected neonates through the sialic acid receptor CD226,7, which suppressed IL-10 production by B cells leading to antibody-mediated protection. Consideration of the maternal-fetal dyad as a joined immunological unit reveals protective roles for antibodies against intracellular infection and fine-tuned adaptations to enhance host defence during pregnancy and early life.


Asunto(s)
Inmunidad Materno-Adquirida , Inmunoglobulina G , Espacio Intracelular , Listeria monocytogenes , Madres , Embarazo , Acetilesterasa , Animales , Animales Recién Nacidos , Linfocitos B , Femenino , Inmunidad Materno-Adquirida/inmunología , Inmunoglobulina G/inmunología , Interleucina-10/biosíntesis , Espacio Intracelular/inmunología , Espacio Intracelular/microbiología , Listeria monocytogenes/inmunología , Listeriosis/inmunología , Listeriosis/prevención & control , Ratones , Ácido N-Acetilneuramínico/metabolismo , Embarazo/inmunología , Lectina 2 Similar a Ig de Unión al Ácido Siálico , Linfocitos T
14.
Diabetes ; 71(3): 470-482, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35040474

RESUMEN

We previously showed that treating NOD mice with an agonistic monoclonal anti-TLR4/MD2 antibody (TLR4-Ab) reversed acute type 1 diabetes (T1D). Here, we show that TLR4-Ab reverses T1D by induction of myeloid-derived suppressor cells (MDSCs). Unbiased gene expression analysis after TLR4-Ab treatment demonstrated upregulation of genes associated with CD11b+Ly6G+ myeloid cells and downregulation of T-cell genes. Further RNA sequencing of purified, TLR4-Ab-treated CD11b+ cells showed significant upregulation of genes associated with bone marrow-derived CD11b+ cells and innate immune system genes. TLR4-Ab significantly increased percentages and numbers of CD11b+ cells. TLR4-Ab-induced CD11b+ cells, derived ex vivo from TLR4-Ab-treated mice, suppress T cells, and TLR4-Ab-conditioned bone marrow cells suppress acute T1D when transferred into acutely diabetic mice. Thus, the TLR4-Ab-induced CD11b+ cells, by the currently accepted definition, are MDSCs able to reverse T1D. To understand the TLR4-Ab mechanism, we compared TLR4-Ab with TLR4 agonist lipopolysaccharide (LPS), which cannot reverse T1D. TLR4-Ab remains sequestered at least 48 times longer than LPS within early endosomes, alters TLR4 signaling, and downregulates inflammatory genes and proteins, including nuclear factor-κB. TLR4-Ab in the endosome, therefore, induces a sustained, attenuated inflammatory response, providing an ideal "second signal" for the activation/maturation of MDSCs that can reverse acute T1D.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Endosomas/metabolismo , Células Supresoras de Origen Mieloide/efectos de los fármacos , Receptor Toll-Like 4/inmunología , Animales , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/inmunología , Antígeno CD11b/análisis , Diabetes Mellitus Tipo 1/inmunología , Femenino , Regulación de la Expresión Génica/inmunología , Ratones , Ratones Endogámicos NOD , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/fisiología
15.
PNAS Nexus ; 1(5): pgac278, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36712378

RESUMEN

The accumulation phase of staphylococcal biofilms relies on both the production of an extracellular polysaccharide matrix and the expression of bacterial surface proteins. A prototypical example of such adhesive proteins is the long multidomain protein Aap (accumulation-associated protein) from Staphylococcus epidermidis, which mediates zinc-dependent homophilic interactions between Aap B-repeat regions through molecular forces that have not been investigated yet. Here, we unravel the remarkable mechanical strength of single Aap-Aap homophilic bonds between living bacteria and we demonstrate that intercellular adhesion also involves sugar binding through the lectin domain of the Aap A region. We find that the mechanical force needed to unfold individual ß-sheet-rich G5-E domains from the Aap B-repeat regions is very high, ranging from 300 up to 1,000 pN at high loading rates, indicating these are extremely stable. This high mechanostability provides a means to the cells to form highly adhesive and cohesive biofilms capable of sustaining high physiological shear stress. Importantly, we identify a previously undescribed role of Aap in bacterial-bacterial adhesion, that is, heterophilic sugar binding by a specific lectin domain located in the N-terminal A region, which might be important to establish initial contacts between cells before strong homophilic bonds come into play. This study emphasizes the remarkable mechanical and binding properties of Aap as well as its wide diversity of adhesive functions.

16.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34548394

RESUMEN

Microorganisms have coevolved diverse mechanisms to impair host defenses. A major one, superantigens, can result in devastating effects on the immune system. While all known superantigens induce vast immune cell proliferation and come from opportunistic pathogens, recently, proteins with similar broad specificity to antibody variable (V) domain families were identified in a commensal microbiota. These proteins, identified in the human commensal Ruminococcus gnavus, are called immunoglobulin-binding protein (Ibp) A and B and have been shown to activate B cells in vitro expressing either human VH3 or murine VH5/6/7. Here, we provide molecular and functional studies revealing the basis of this Ibp/immunoglobulin (Ig) interaction. The crystal structure and biochemical assays of a truncated IbpA construct in complex with mouse VH5 antigen-binding fragment (Fab) shows a binding of Ig heavy chain framework residues to the Ibp Domain D and the C-terminal heavy chain binding domain (HCBD). We used targeted mutagenesis of contact residues and affinity measurements and performed studies of the Fab-IbpA complex to determine the stoichiometry between Ibp and VH domains, suggesting Ibp may serve to cluster full-length IgA antibodies in vivo. Furthermore, in vitro stimulation experiments indicate that binding of the Ibp HCBD alone is sufficient to activate responsive murine B cell receptors. The presence of these proteins in a commensal microbe suggest that binding a broad repertoire of immunoglobulins, particularly in the gut/microbiome environment, may provide an important function in the maintenance of host/microbiome homeostasis contrasting with the pathogenic role of structurally homologous superantigens expressed by pathogens.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Linfocitos B/metabolismo , Clostridiales/metabolismo , Cadenas Pesadas de Inmunoglobulina/metabolismo , Región Variable de Inmunoglobulina/metabolismo , Receptores de Antígenos de Linfocitos B/metabolismo , Superantígenos/metabolismo , Animales , Anticuerpos Monoclonales/química , Linfocitos B/inmunología , Sitios de Unión , Clostridiales/crecimiento & desarrollo , Humanos , Cadenas Pesadas de Inmunoglobulina/química , Región Variable de Inmunoglobulina/química , Ratones , Ratones Endogámicos C57BL , Receptores de Antígenos de Linfocitos B/química , Superantígenos/química
17.
PLoS One ; 16(7): e0254667, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34260645

RESUMEN

The world is currently in a pandemic of COVID-19 (Coronavirus disease-2019) caused by a novel positive-sense, single-stranded RNA ß-coronavirus referred to as SARS-CoV-2. Here we investigated rates of SARS-CoV-2 infection in the greater Cincinnati, Ohio, USA metropolitan area from August 13 to December 8, 2020, just prior to initiation of the national vaccination program. Examination of 9,550 adult blood donor volunteers for serum IgG antibody positivity against the SARS-CoV-2 Spike protein showed an overall prevalence of 8.40%, measured as 7.56% in the first 58 days and 9.24% in the last 58 days, and 12.86% in December 2020, which we extrapolated to ~20% as of March, 2021. Males and females showed similar rates of past infection, and rates among Hispanic or Latinos, African Americans and Whites were also investigated. Donors under 30 years of age had the highest rates of past infection, while those over 60 had the lowest. Geographic analysis showed higher rates of infectivity on the West side of Cincinnati compared with the East side (split by I-75) and the lowest rates in the adjoining region of Kentucky (across the Ohio river). These results in regional seroprevalence will help inform efforts to best achieve herd immunity in conjunction with the national vaccination campaign.


Asunto(s)
Anticuerpos Antivirales/sangre , Donantes de Sangre/estadística & datos numéricos , COVID-19/epidemiología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/inmunología , Femenino , Humanos , Inmunoglobulina G/sangre , Masculino , Persona de Mediana Edad , Ohio/etnología , Pandemias , Estudios Seroepidemiológicos , Adulto Joven
18.
Nat Chem Biol ; 17(8): 878-887, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34045745

RESUMEN

In ovoid-shaped, Gram-positive bacteria, MapZ guides FtsZ-ring positioning at cell equators. The cell wall of the ovococcus Streptococcus mutans contains peptidoglycan decorated with serotype c carbohydrates (SCCs). In the present study, we identify the major cell separation autolysin AtlA as an SCC-binding protein. AtlA binding to SCC is attenuated by the glycerol phosphate (GroP) modification. Using fluorescently labeled AtlA constructs, we mapped SCC distribution on the streptococcal surface, revealing enrichment of GroP-deficient immature SCCs at the cell poles and equators. The immature SCCs co-localize with MapZ at the equatorial rings throughout the cell cycle. In GroP-deficient mutants, AtlA is mislocalized, resulting in dysregulated cellular autolysis. These mutants display morphological abnormalities associated with MapZ mislocalization, leading to FtsZ-ring misplacement. Altogether, our data support a model in which maturation of a cell wall polysaccharide provides the molecular cues for the recruitment of cell division machinery, ensuring proper daughter cell separation and FtsZ-ring positioning.


Asunto(s)
Pared Celular/metabolismo , Polisacáridos/metabolismo , Streptococcus mutans/metabolismo , División Celular , Pared Celular/química , Polisacáridos/química , Streptococcus mutans/citología
19.
Blood ; 137(24): 3443-3453, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-33512486

RESUMEN

Glycoprotein VI (GPVI) is the major signaling receptor for collagen on platelets. We have raised 54 nanobodies (Nb), grouped into 33 structural classes based on their complementary determining region 3 loops, against recombinant GPVI-Fc (dimeric GPVI) and have characterized their ability to bind recombinant GPVI, resting and activated platelets, and to inhibit platelet activation by collagen. Nbs from 6 different binding classes showed the strongest binding to recombinant GPVI-Fc, suggesting that there was not a single dominant class. The most potent 3, Nb2, 21, and 35, inhibited collagen-induced platelet aggregation with nanomolar half maximal inhibitory concentration (IC50) values and inhibited platelet aggregation under flow. The binding KD of the most potent Nb, Nb2, against recombinant monomeric and dimeric GPVI was 0.6 and 0.7 nM, respectively. The crystal structure of monomeric GPVI in complex with Nb2 revealed a binding epitope adjacent to the collagen-related peptide (CRP) binding groove within the D1 domain. In addition, a novel conformation of GPVI involving a domain swap between the D2 domains was observed. The domain swap is facilitated by the outward extension of the C-C' loop, which forms the domain swap hinge. The functional significance of this conformation was tested by truncating the hinge region so that the domain swap cannot occur. Nb2 was still able to displace collagen and CRP binding to the mutant, but signaling was abolished in a cell-based NFAT reporter assay. This demonstrates that the C-C' loop region is important for GPVI signaling but not ligand binding and suggests the domain-swapped structure may represent an active GPVI conformation.


Asunto(s)
Complejo Antígeno-Anticuerpo , Plaquetas , Glicoproteínas de Membrana Plaquetaria , Multimerización de Proteína , Anticuerpos de Dominio Único , Complejo Antígeno-Anticuerpo/química , Complejo Antígeno-Anticuerpo/metabolismo , Plaquetas/química , Plaquetas/metabolismo , Humanos , Activación Plaquetaria/efectos de los fármacos , Activación Plaquetaria/genética , Glicoproteínas de Membrana Plaquetaria/química , Glicoproteínas de Membrana Plaquetaria/genética , Glicoproteínas de Membrana Plaquetaria/metabolismo , Dominios Proteicos , Multimerización de Proteína/efectos de los fármacos , Multimerización de Proteína/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/farmacología
20.
Allergy ; 76(1): 302-313, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32640045

RESUMEN

BACKGROUND: Atopic dermatitis (AD) patients are often colonized with Staphylococcus aureus, and staphylococcal biofilms have been reported on adult AD skin lesions. The commensal S epidermidis can antagonize S aureus, although its role in AD is unclear. We sought to characterize S aureus and S epidermidis colonization and biofilm propensity and determine their associations with AD severity, barrier function, and epidermal gene expression in the first US early-life cohort of children with AD, the Mechanisms of Progression of Atopic Dermatitis to Asthma in Children (MPAACH). METHODS: The biofilm propensity of staphylococcal isolates was assessed by crystal violet assays. Gene expression of filaggrin and antimicrobial alarmins S100A8 and S100A9 was measured in keratinocyte RNA extracted from skin tape strips. Staphylococcal biofilms sampled from MPAACH skin were visualized using scanning electron microscopy. RESULTS: Sixty-two percent of staphylococcal isolates (sampled from 400 subjects) formed moderate/strong biofilms. Sixty-eight percent of subjects co-colonized with both staphylococcal species exhibited strains that formed cooperative mixed-species biofilms. Scanning electron microscopy verified the presence of staphylococcal biofilms on the skin of MPAACH children. Staphylococcus aureus strains showing higher relative biofilm propensity compared with S epidermidis were associated with increased AD severity (P = .03) and increased lesional and nonlesional transepidermal water loss (P = .01, P = .03). CONCLUSIONS: Our data suggest a pathogenic role for S aureus biofilms in AD. We found that strain-level variation in staphylococcal isolates governs the interactions between S epidermidis and S aureus and that the balance between these two species, and their biofilm propensity, has important implications for AD.


Asunto(s)
Dermatitis Atópica , Infecciones Estafilocócicas , Adulto , Biopelículas , Niño , Proteínas Filagrina , Humanos , Piel , Staphylococcus aureus , Staphylococcus epidermidis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...